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Introduction

This book is about a certain sort of random process. The characteristic property
of this sort of process is that it retains no memory of where it has been in the past.
This means that only the current state of the process can influence where it goes
next. Such a process is called a Markov process. We shall be concerned exclusively
with the case where the process can assume only a finite or countable set of states,
when it is usual to refer it as a Markov chain.

Examples of Markov chains abound, as you will see throughout the book. What
makes them important is that not only do Markov chains model many phenomena
of interest, but also the lack of memory property makes it possible to predict how
a Markov chain may behave, and to compute probabilities and expected values
which quantify that behaviour. In this book we shall present general techniques
for the analysis of Markov chains, together with many examples and applications.
In this introduction we shall discuss a few very simple examples and preview some
of the questions which the general theory will answer.

We shall consider chains both in discrete time
neZt = {0,1,2,...}

and continuous time
t€ RT =[0,00).

The letters n,m, k will always denote integers, whereas t and s will refer to real
numbers. Thus we write (X,)n>0 for a discrete-time process and (X);>o for a
continuous-time process.
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2 Introduction

Markov chains are often best described by diagrams, of which we now give some
simple examples:

(i) (Discrete time)

W=

You move from state 1 to state 2 with probability 1. From state 3 you move either
to 1 or to 2 with equal probability 1/2, and from 2 you jump to 3 with probability
1/3, otherwise stay at 2. We might have drawn a loop from 2 to itself with label
2/3. But since the total probability on jumping from 2 must equal 1, this does not
convey any more information and we prefer to leave the loops out.

(ii) (Continuous time)

Oe °]

When in state 0 you wait for a random time with exponential distribution of pa-
rameter A € (0,00), then jump to 1. Thus the density function of the waiting time
T is given by

frt) = xe™™ for ¢ > 0.

We write T' ~ E(X) for short.

(iii) (Continuous time)

Here, when you get to 1 you do not stop but after another independent exponential
time of parameter A jump to 2, and so on. The resulting process is called the
Poisson process of rate \.



(iv) (Continuous time)

In state 3 you take two independent exponential times Ty ~ E(2) and T» ~ E(4);
if T7 is the smaller you go to 1 after time 77, and if 75 is the smaller you go to 2
after time T». The rules for states 1 and 2 are as given in examples (ii) and (iii).
It is a simple matter to show that the time spent in 3 is exponential of parameter
2+ 4 = 6, and that the probability of jumping from 3 to 1is 2/(2+4) = 1/3. The
details are given later.

(v) (Discrete time)

0

We use this example to anticipate some of the ideas discussed in detail in Chapter
1. The states may be partitioned into communicating classes, namely {0}, {1, 2,3}
and {4,5,6}. Two of these classes are closed, meaning that you cannot escape.
The closed classes here are recurrent, meaning that you return again and again to
every state. The class {0} is transient. The class {4,5,6} is periodic, but {1,2,3}
is not. We shall show how to establish the following facts by solving some simple
linear equations. You might like to try from first principles.

(a) Starting from 0, the probability of hitting 6 is 1/4.

(b) Starting from 1, the probability of hitting 3 is 1.

(c)

(d)
Let us write pj; for the probability starting from ¢ of being in state j after n steps.
Then we have:

o .
(e) lim pg =9/32;
(f) p§, does not converge as n — 0o;
(g) lim p37 =1/124.

n—oo

Starting from 1, it takes on average three steps to hit 3.
Starting from 1, the long-run proportion of time spent in 2 is 3/8.



